中文字幕97在线_疯狂做受XXXⅩ高潮视频免费_无码人妻丝袜在线视频_国产视色_99vv1com这只有精品_扒开粉嫩的小缝隙喷白浆

Product Query

WhatsApp
WeChat
Nanjing ChiShun Tech Dev Co., Ltd
Location:Service > Technical Articles

Technical Articles

Ball Milling Preparation Scheme improves synthesis efficiency

Sodium ion batteries have advantages such as abundant resources, low cost, and high cost-effectiveness, and have good application prospects in the fields of electric bicycles, low-speed electric vehicles, distributed energy storage, and large-scale energy storage. The working principle of sodium ion batteries is similar to that of lithium-ion batteries, and the positive electrode material determines the energy density of sodium ion batteries. Polyanionic compounds have the advantages of high voltage, high theoretical specific capacity, and stable structure, making them one of the preferred positive electrode materials for sodium ion batteries.


Recently, the research team led by researcher Li Xianfeng, researcher Zhang Huamin and associate researcher Zheng Qiong from the energy storage Research Department of Dalian Institute of Chemical Physics made new progress in the research of polyanionic cathode materials for sodium ion batteries, and the research results were published in the Energy Bulletin of the American Chemical Society.


To improve its rate performance, optimize the performance of the entire battery, and further reduce material preparation costs and achieve large-scale material preparation, it is an urgent challenge to overcome.


Researchers have conducted a series of studies on the structural elemental regulation, sodium de intercalation mechanism, carbon composite preparation, and the construction of full and soft pack batteries of polyanionic cathode materials for sodium ion batteries, achieving efficient synthesis and application of high-performance vanadium based polyanionic compounds such as sodium trifluorophosphate, sodium vanadium fluorophosphate, and sodium vanadium phosphate.


Sodium vanadium trifluorophosphate has a three-dimensional network structure formed by the intermittent connection between the [V2O8F3] dioctahedron and the [PO4] tetrahedron, which is conducive to the rapid insertion and removal of Na+. Its theoretical energy density is 500Wh/kg, which is equivalent to the energy density of LiFePO4 in lithium-ion batteries (550Wh/kg) and has received much attention in recent years.


The research team proposed a low-temperature solvent thermal ball milling preparation method, which achieved the green and economic synthesis of high conductivity carbon coated sodium vanadium fluorophosphate (Na3V2 (PO4) 2F3). Research has found that the type of solvent and pH value play a crucial role in the morphology and product purity of Na3V2 (PO4) 2F3 during low-temperature solvothermal processes. In the acidic environment of ethanol and water mixed solvents, crystals have high surface energy and can obtain high-purity and high yield Na3V2 (PO4) 2F3. Effectively improving its ion diffusion and electron conduction capabilities. The sodium ion battery assembled with Na3V2 (PO4) 2F3 has a high specific capacity of 138mAh/g at a current of 0.5C, and can still maintain a capacity of 122mAh/g at a high current of 40C. This low-temperature solvent thermal ball milling method will provide a new strategy for the practical application of low-cost and high-performance sodium ion battery technology.

Contact

+86 139 1299 5166

  • Email: chishun@126.com
  • Phone: +86 139 1299 5166
  • Address: NO.2 Ailing Road, Jiangning DisTrict, Nanjing
  • WhatsApp

  • WeChat

Copyright ? CHISHUN TECH 


Top

主站蜘蛛池模板: 武定县| 右玉县| 温宿县| 南华县| 南皮县| 沙雅县| 晴隆县| 宣威市| 兰考县| 天镇县| 商丘市| 阳江市| 寿宁县| 新民市| 松溪县| 阿尔山市| 手机| 边坝县| 大连市| 高淳县| 泰州市| 酉阳| 苍山县| 朝阳区| 济宁市| 贡山| 新兴县| 德清县| 长乐市| 工布江达县| 永修县| 遵化市| 阿拉善左旗| 资溪县| 谢通门县| 阜平县| 荆门市| 信阳市| 溆浦县| 杭锦后旗| 哈巴河县|